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Electric-field gradients used to measure atomic short range
order: U(In0.5Sn0.5)3 as a case-study
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Abstract. A scheme is presented in order to obtain complete information on atomic short range order in
crystalline materials based on measuring the electric-field gradient on a probe nucleus. Limitations and
possible improvements of the method are discussed. When applied to U(In0.5Sn0.5)3, short range order
with In–Sn attraction is found.

PACS. 75.40.-s Critical-point effects, specific heats, short-range order – 76.80.+y Mössbauer effect;
other γ-ray spectroscopy – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

Extended X-ray Absorption Spectroscopy (EXAFS) and
diffuse scattering of X-rays on single crystals [1,2] are the
techniques most often used to study atomic Short Range
Order (SRO). However, they are not always applicable.
Less standard methods are to be used when either no – or
only small – single crystals can be grown or when the dis-
ordered atoms have comparable atomic numbers. The use
of synchrotron radiation can circumvent the limitation due
to small single crystals. The limitation due to constituents
of similar Z can be encompassed by preparing samples
with mono-isotopic atoms and investigating them by dif-
fuse scattering of neutrons. Recently also the possibility
to measure SRO by the production of γ-ray holograms
has been proposed [3,4]. All these methods however are in
one way or another difficult to apply. Hyperfine interac-
tion techniques may offer an alternative approach at least
in some particular cases. Hyperfine interaction quantities,
especially the electric-field gradient (efg), are extremely
sensitive to the local electronic environment, and hence
to the nature of the nearest neighbours. In this paper
we describe a scheme to derive from the measured efg
the SRO-parameters and discuss possible improvements
to overcome the (still severe) limitations in the present
approach. By applying this scheme to U(In0.5Sn0.5)3 we
collect evidence for the existence of SRO in this material.

As a function of Sn-concentration, the pseudo-binary
system U(In1−xSnx)3 shows an evolution from a mainly
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localized magnetic material (UIn3) to delocalised band-
like behaviour (USn3) [5]. In the region near x = 0.6 it
is not yet clear whether the system behaves as a heavy-
fermion or rather as a spinfluctuating system. U sits at the
Au-position in this AuCu3-structure, In and Sn are dis-
tributed over the Cu-sublattice. In the discussion on the
electronic behaviour in material, the possible influence of
atomic SRO is as yet ignored. However one cannot a pri-
ori exclude that a non-random (In, Sn)-distribution leads
to a different ground state as compared with a random
distribution. This system is also a typical example where
diffuse X-ray scattering cannot be used to study SRO be-
cause only small single crystals can be produced, and In
(Z = 49) and Sn (Z = 50) are next to each other in the
periodic table. Furthermore, 111In is not only the favorite
perturbed angular correlation (PAC) probe and as such
not an impurity in the compound, it also makes the PAC
technique ideally suited for SRO studies in this particular
system.

2 SRO and electric-field gradients

It lies in the nature of the problem that SRO-information
is contained in diffuse, broad features. In a hyperfine in-
teraction experiment, the presence of SRO is seen as a
distribution in the measured quantities. As far as the
electric-field gradient (efg) is concerned, the reason for this
distribution is that each particular environment around
the probe nucleus yields its own efg (characterized by its
strength Vzz, asymmetry parameter η and possibly its
absolute orientation). A Mössbauer, Perturbed Angular
Correlation (PAC) or NMR-spectrum will hence contain
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many sub-spectra, each of them corresponding to slightly
different types of environments. The classical way of anal-
ysis is unraveling such a complex spectrum in its compo-
nents. This method may be applicable within the dilute
impurity concentration range, but fails for a non-dilute
mixture of two elements on the same sub-lattice. Such
an impossible classical fit can be avoided by taking into
account the distribution function P (Vzz , η) rather than
each particular environment. If both the relationships be-
tween P (Vzz , η) and the experimental spectrum as well
as between P (Vzz , η) and the SRO are known, then SRO-
information can be extracted from the experiment. The
former relation is straightforward to obtain for each exper-
imental technique. On the connection between P (Vzz , η)
and SRO, a quite general formulation has been given by
Czjzek et al. [6,7], where the point charge model was used
to describe the charge distribution. In the present work, we
follow a more brute-force oriented approach: many differ-
ent SRO-situations are generated by computer. For each
one, P (Vzz , η) is obtained in a numerical/statistical way.
The corresponding PAC-spectrum can then be compared
with experiment.

The first step is to give a quantitative description of
SRO. This can be done by the well-known Warren-Cowley
parameters [1,8,9], which describe the probability to find
a B-type atom at a certain neighbour position around an
A-atom. In principle an infinite number of Warren-Cowley
parameters is needed to describe the SRO completely, but
in practice a set describing the probabilities for the first
few neighbour shells is sufficient. Given such a set, a com-
puter simulation can yield a piece of crystal with a type of
SRO obeying these Warren-Cowley parameters. We wrote
a program according to an algorithm given by Gehlen et al.
[10] to obtain a piece of crystal with 60 000 atoms and pe-
riodic boundary conditions. The last step – determining
which experimental Mössbauer, PAC or NMR spectrum
will result from the simulated type of SRO – is the most
difficult one. It is very feasible nowadays to calculate the
efg at any position in a periodic structure by ab initio
methods [11,12]. The time needed to perform such a calcu-
lation highly depends on the number of atoms in the unit
cell, and something like 100 atoms takes already weeks
of CPU-time on a midrange server. Unfortunately, in our
SRO-case there is no periodicity, hence the complete sim-
ulated crystal with its 60 000 atoms would have to be
taken as the unit. Smaller cells are hardly possible: the
smaller the simulated crystal the more (unphysical) con-
straints are put on the allowed types of SRO. Therefore we
can exclude at the moment the efg-calculation by reliable
ab initio methods. Instead we are forced to use the older
and much less reliable, but computationally much faster,
point charge model: the efg is thought as to arise from
the lattice of ions in the neighborhood of a given position
in the crystal [13]. We note that a point charge model
largely fails in predicting the magnitude Vzz of an efg, but
is most often correct as far as the symmetry is concerned
(asymmetry parameter η and orientation). Hence we can
to some degree justify the use of a point charge model

if our analysis is built on symmetry arguments only. The
following procedure is practical:

(1) measure the efg on some (impurity) probe nucleus;
(2) simulate a crystal according to a set of Warren-Cowley

parameters;
(3) calculate by the point charge model (or by any method

allowed within the computing facility at hand) the efg
on any position available to the probe nucleus;

(4) for any of the efg’s found under (3) and properly
weighted: calculate the experimental spectrum and
add it to the sum of the already obtained spectra;

(5) repeat (2) to (4) until the average spectrum obtained
under (4) stabilizes;

(6) compare the calculated spectrum from (5) with the
measured spectrum from (1);

(7) repeat from (2) on, until a suitable set of Warren-
Cowley parameters is found.

For this scheme, it is required that the parent of the
probe atom is a constituting element of the studied mate-
rial. If not the probe atoms may not be equally distributed
over all environments but preferentially attracted by some
specific ones. In the latter case an erroneous conclusion
about the SRO would be made. For a PAC- measurement
on 111Cd (parent 111In) or a Mössbauer experiment on
119mSn in U(In1−xSnx)3, this condition is fulfilled. Note
also that the weighting as indicated under (3) poses no
problem: in the simulated crystal e.g. each In-position can
be thought as to decay to a 111Cd probe. Hence, if the efg
is calculated on a 111Cd-nucleus subsequently sitting at
every In-position, then the most likely environments are
automatically encountered most often.

All essential approximations are made in the point
charge model under (3) and in no other part of the scheme.
Within the point charge model, (possibly non-integer)
ionic charges have to be attributed to the different atoms.
These values have no clear physical meaning in a metal-
lic compound like U(In1−xSnx)3. Also other doubtful pa-
rameters as the electronic enhancement factor k and the
Sternheimer antishielding factor γ∞ enter the point charge
model. In order to render the use of this model neverthe-
less as justified as possible in our case, we need to distin-
guish between parameters which affect either the magni-
tude Vzz of the efg or its asymmetry. In an experiment, the
latter category determines the shape of the experimental
spectrum and the former its absolute “strength” (amount
of splitting for Mössbauer, main frequency for PAC and
position on the frequency axis for NMR). The symmetry
of the efg is fully determined by the ionic charge distri-
bution (it is not very likely in the case of a 111Cd probe
that local contributions to the efg have another symmetry
than the ionic lattice) and not at all influenced [13] by the
extra parameters k and γ∞. The role of the ionic charges
is however more complicated. It can be proven that for a
AuCu3 structure the shape of the spectrum is determined
by a shape parameter α:

α =
ZU − [(1− x)ZIn + xZSn]

ZSn − ZIn
· (1)
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α = ∞

Small α

Fig. 1. PAC-spectra from a probe at the In-position, obtained
by the point charge model from a simulated U(In0.5Sn0.5)3-
crystal with 60 000 atoms and without short range order. The
shape parameter α is varied from a low value (below, large
charge difference between In and Sn) to infinity (above, In and
Sn have same charge).

Zi is the ionic charge (valence) of the atom of type i. This
can be understood from the fact that in a AuCu3-structure
the strength of the efg is proportional to ZAu − ZCu [14].
Hence, the numerator of α gives the valence difference be-
tween U and an average (In, Sn)-atom, and thus measures
the strength of an average efg. If the valence difference
between In and Sn (the denominator) is very small with
respect to the average efg (the numerator), then α is large
and the spectrum will look almost like the one for pure
UIn3 or USn3. For large α (In and Sn very different) the
spectrum is heavily damped. Note that α itself contains no
strength-information, as both numerator and denomina-
tor are proportional to the strength. A different triplet of
charges (ZU, ZSn, ZIn) which gives the same α (obtained
e.g. by doubling all Zi) will yield a spectrum with the same
shape but with a different strength. As the point charge
model is unreliable as far as the magnitude (strength) of
the efg is concerned but gives good results for the sym-
metry (shape), we completely neglect the strength-related
parameters. In practice this means we fix all but one of
the parameters k, γ∞, ZIn, ZSn and ZU to an arbitrary
value. By varying the remaining one, α is controlled, and
hence the shape of the spectrum. Then the spectrum is
compared with the measurement by simply rescaling it by
an amount needed to give a best fit. Actually, this is noth-
ing else than supposing that the magnitude of the efg as
calculated by the point charge model is off by the same
factor for all possible environments. As the environments
are similar to a large degree (due to the similarity of In
and Sn), this is not too bad an assumption.

Fig. 2. Same conditions as in Figure 1. Now the shape param-
eter α is kept fixed at 6.0, while the In–Sn interaction for the
first neighbour shell is varied from maximal In–Sn attraction
(below) over no-interaction (arrow) to maximal In–Sn repul-
sion (above).

Before tackling a real experiment, we demonstrate the
influence of some parameters on a PAC-spectrum for poly-
crystalline U(In0.5Sn0.5)3. In Figure 1, for a situation
without SRO the shape-parameter α is varied from α ≈ 0
(below, the charge difference between In and Sn relative
to the charge difference between U and an average (In,
Sn)-atom is large) up to α ≈ ∞ (above, In and Sn have
identical charges). The larger the difference between the
ionic charges on In and Sn, the faster the PAC-spectrum
is wiped out. In Figure 2, α is kept fixed at 6.0, and the
first Warren-Cowley parameter describing the interaction
of the parent In-atom with the first nearest neighbour shell
is varied from In–Sn attraction (below) over no interac-
tion (arrow) to In–Sn repulsion (above). In Figure 2 no
Warren-Cowley parameters for higher shells are specified,
which leaves a lot of freedom. In an actual calculation,
the values of non-specified order parameters are implicitly
determined by the algorithm used to produce the crystal.
We checked that specifying the values for the first 4 near-
est neighbour shells was sufficient in order to reproduce a
calculated spectrum within experimental error. Note that
when comparing Figure 2 with Figure 1, no obvious fea-
ture immediately signals the presence of SRO. The SRO
manifests itself rather as small changes distributed over
the PAC-spectrum as a whole.
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Table 1. For the first 8 types of (In, Sn)-neighbours around an In-atom the following information is listed: number of atoms of
that type, distance to the central In-atom, direction of the neighbour as seen from the central atom and Sn-concentration for
neighbours of that type (in brackets: deviation of this local concentration from the bulk concentration 0.5). The interaction for
the first 4 types was imposed to the simulation program. For all other neighbours further away no freedom appeared to be left.

(In, Sn) Number of (In, Sn)- Distance from Direction Sn-fraction and

neighbour type neighbours central In-atom (difference from xbulk = 0.5)

1 8 0.70711 (1 0 1) 0.65 (+0.15)

2 2 1.00000 (0 0 1) 0.15 (−0.35)

3 4 1.00000 (1 0 0) 0.25 (−0.25)

4 16 1.22474 (1 2 1) 0.58 (+0.08)

5 4 1.41421 (1 1 0) 0.34 (−0.16)

6 8 1.41421 (1 0 1) 0.30 (−0.20)

7 8 1.58114 (3 0 1) 0.60 (+0.10)

8 8 1.58114 (1 0 3) 0.60 (+0.10)
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Fig. 3. (a) Room temperature 111Cd PAC measurement on
U(In0.5Sn0.5)3 (axes valid for this measurement). (b) Best fit-
ting simulation with α = 6.0 and no SRO. (c) Best fitting sim-
ulation with α = 6.0 and SRO imposed for the 4 nearest types
of neighbours. Arrows indicate the significant improvements of
(c) over (b). Both simulations are shifted for clarity.

3 SRO in U(In0.5Sn0.5)3

Figure 3 shows a room temperature PAC-measurement
on polycrystalline U(In0.5Sn0.5)3. When compared with a
similar measurement for USn3 (Fig. 4), it is clear that the
disorder on the (In, Sn)-sublattice indeed causes a damp-
ing of the spectrum, as expected from Figure 1. The damp-
ing is not particularly strong however, indicating that
there is not so much difference between In and Sn. In prin-
ciple one should now, in the parameter space spanned by
(α, WC1, WC2, WC3, WC4) – WCi are Warren-Cowley
parameters for the 4 nearest types of neighbour positions
– find the quintet which yields a spectrum with the same
shape as the measured one. Even with the point charge
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Fig. 4. 111Cd PAC spectrum of USn3 (x = 1) at 40 K.

model, this is extremely demanding with respect to CPU-
time. Therefore we determined first the best α when a
random (In, Sn)-distribution was assumed (i.e. the best
fitting function from Fig. 1). This value turned out to
be about 6. As the influence of α on the shape is much
larger than the effect of WC1 (Figs. 1, 2), which is again
much larger than the influence of WC2, this approach is
justified. It may be seen from Figures 1 and 3 that no
zero-interaction spectrum has really the same shape as
the measurement (follow the structure of the simulated
spectra at the positions of the two arrows in Fig. 3). This
implies that SRO must be present. After varying the first
4 Warren-Cowley parameters, the best shape was found to
be the one labeled as (c) in Figure 3, which fits the data
rather well. Translated into the Sn-fraction present in the
nth neighbour shell around an In-atom (Cd-probe) this
yields Table 1. There appears to be more Sn than average
in the first shell (In–Sn attraction), less in the second, and
so on with an oscillating behaviour.

A direct consequence of the existence of SRO in
U(In1−xSnx)3 is the position where the magnetic/
non-magnetic boundary lies. From previous PAC-
measurements on this system with x = 0.3 [15], we know
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a minimal local In-concentration should be reached in or-
der to observe a stable local magnetic field. When In–In
attraction is present, a macroscopically detectable long
range magnetic order will occur at lower x than if In–Sn
attraction happens. It can not be excluded that different
sample growing techniques induce different types of SRO,
which could help explain the variety of boundary-values
found in U(In1−xSnx)3. To examine this, we annealed two
samples with x = 0.5 for 24 h at 500 ◦C. One was cooled
quickly by dropping in liquid nitrogen, while the other
sample steadily cooled during a week. The resulting PAC-
spectra were however the same, indicating that the type
of SRO is rather independent of sample treatment.

4 Discussion

We do not claim that the SRO in U(In1−xSnx)3 really is
of the type as given in Table 1, because the uncertainties
contained in the point charge model are too crude. But we
might at least conclude that there is a strong indication
for a non-random (In, Sn)-distribution with possibly
In–Sn attraction. The main conclusion from this paper –
which we estimate far more important than the particular
case of U(In1−xSnx)3 – is that by measuring the efg it
is possible to characterize the SRO in a situation where
conventional X-ray techniques would certainly fail due
to the similarity of the disordered elements, provided
an accurate and fast method to calculate the efg in a
non-periodic structure is available. Further advantages of
the efg-approach are that it can be used for both poly-
and single crystals, while X-rays are limited to single
crystals. It is also straightforward to incorporate higher
order correlations in the analysis (X-rays are inherently
sensitive only to pair correlations between atoms). This
can reduce the remaining ambiguity when only a few
neighbours can be detected [1]. Disadvantages are the
fact that (the parent of) the nuclear probe should not be
an impurity in the material. Also the disordered elements
may not be too far apart in the periodic table, other-
wise there will be not much detail in the experimental
spectrum (but in such a case it is usually no prob-
lem to use X-rays). The main disadvantage is the heavy
computational load, and related therewith the need to use

the inaccurate point charge model. Much improvement
could be achieved by a substitution of the point charge
model by an ab initio method capable of treating non-
periodic materials. Such methods exist – e.g. the Coher-
ent Potential Approximation [16] – but they should be
extended first in order to be able to calculate hyperfine
interaction quantities. A further refinement of the scheme
can be made by allowing atomic displacements (see e.g.
[17]), although this would again drastically increase the
amount of freedom and hence the calculation time.

The authors want to thank Prof. P. Blaha (Physics Depart-
ment, TU Wien) for countless fruitful discussions on theoreti-
cal aspects of the electric-field gradient.
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